Univariate polynomial solutions of algebraic difference equations
نویسندگان
چکیده
منابع مشابه
Univariate polynomial solutions of algebraic difference equations
Contrary to linear difference equations, there is no general theory of difference equations of the form G(P (x − τ1), . . . , P (x − τs)) + G0(x)=0, with τi ∈ K, G(x1, . . . , xs) ∈ K[x1, . . . , xs] of total degree D ≥ 2 and G0(x) ∈ K[x], where K is a field of characteristic zero. This article is concerned with the following problem: given τi, G and G0, find an upper bound on the degree d of a...
متن کاملUnivariate Polynomial Solutions of Nonlinear Polynomial Difference Equations
We study real-polynomial solutions P (x) of difference equations of the formG(P (x−τ1), . . . , P (x− τs)) +G0(x)=0, where τi are real numbers, G(x1, . . . , xs) is a real polynomial of a total degree D ≥ 2, and G0(x) is a polynomial in x. We consider the following problem: given τi, G and G0, find an upper bound on the degree d of a real-polynomial solution P (x), if exists. We reduce this pro...
متن کاملPolynomial solutions of differential-difference equations
1 We investigate the zeros of polynomial solutions to the differential-difference equation P n+1 (x) = A n (x)P ′ n (x) + B n (x)P n (x), n = 0, 1,. .. where A n and B n are polynomials of degree at most 2 and 1 respectively. We address the question of when the zeros are real and simple and whether the zeros of polynomials of adjacent degree are interlac-ing. Our result holds for general classe...
متن کاملLinear holonomy groups of algebraic solutions of polynomial differential equations
© Annales de l’institut Fourier, 1997, tous droits réservés. L’accès aux archives de la revue « Annales de l’institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Symbolic Computation
سال: 2014
ISSN: 0747-7171
DOI: 10.1016/j.jsc.2013.10.010